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The Characteristic .Impedance of Rectangular
Transmission Lines with Thin Center
Conductor and Air Dielectric

CLAUDE M. WEIL, MEMBER, IEEE

Abstract—The characteristic impedance of large-scale rectangular strip
transmission line facilities used for such purposes as EMI susceptibility
testing, biological exposures, etc., is discussed. These lines are char-
acterized by a thin center conductor and an air dielectric. Impedance data
obtained by earlier workers, using different analytical and numerical
techniques, are reviewed and compared. Exact data are available for the
problem involving a center conductor of zero thickness, while for the
center conductor of finite thickness, data are available which are accurate
to less than 1.25 percent.

I. INTRODUCTION

ECTANGULAR COAXIAL transmission lines

which contain a propagating transverse electromag-
netic (TEM) field are finding increasing application in
such areas as EM susceptibility and emissions testing,
biological effects of RF exposure, and calibration of
radiation survey meters and electric field probes. Such
lines possess an air dielectric with a thin center conductor,
thereby maximizing the test space available between con-
ductors. Crawford [1] has discussed the properties of such
lines as well as their advantages, and has described a
family of TEM “cells” constructed at the National Bureau
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of Standards. A similar transmission line of this type, used
for purposes of exposing monkeys as well as large phan-
toms to HF-band (10-30-MHz) radiation fields has also
been described [2], [3]. Others [4] have used much smaller
rectangular lines of this type to investigate the interaction
of microwaves with isolated nerve cells at frequencies up
to 3 GHz. The use of such lines for calibration of radia-
tion survey (hazard) meters as well as electric and mag-
netic field probes in the VHF and UHF bands has been
discussed by Crawford [5], Baird [6], and Aslan [7]. A
series of these transmission lines is now manufactured
commercially by Instruments for Industries, Inc.,
Farmingdale, NY, and has been termed “Crawford Cells”
by the manufacturer.

The characteristic impedance of such transmission lines
has been quoted by Crawford [1] in terms of the fixed
dimensions of the line’s cross section (see Fig. 1 for
notation) as well as an unknown fringing capacitance per
unit length Cy.

7 376.73
°4[w/(b—1)+C//€]

where €=28.8542x 1072 F/m, assuming an air dielectric.
Crawford used time-domain reflectometry methods to ex-

(1)
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Fig. 1. Characteristic impedance for rectangular strip line with center

conductor of zero thickness.

perimentally determine the unknown fringing capacitance.
Such methods obviously do not make for a rapid and
straightforward design procedure since they require, of
necessity, a “cut-and-try” approach.

There exists, in fact, a considerable body of literature
which deals with analytical and numerical solutions to the
rectangular transmission line problem, thus obviating the
need for experimental design. This paper attempts to
review the previous work on this subject and compares
data obtained using different analytical and numerical
methods. Much of the existing data is in a form that is of
little practical value to a design engineer. For this reason,
convenient design curves have been compiled, which
should assist researchers in the rapid design of large-scale
transmission line facilities suitable for EMI susceptibility
testing, biological exposures, or instrument calibration,
etc.

II. REVIEW OF PREVIOUS WORK

Rectangular lines may generally be classified according
to the thickness of the center conductor, relative to the
ground plane separation ¢/b. Rectangular lines with thin
center conductors, 7/b<0.2, are sometimes termed
“strip” lines while those having a thick center conductor
(rectangular bar) with 0.2 < ¢/b <1 are usually called rect-
angular coaxial lines. This paper deals primarily with the
“thin” class of rectangular lines where /b <0.1.

Almost all of the analytical solutions to the rectangular
line problem are based on the closely related problem
involving coupled coplanar strips between infinite ground
planes [8]-[13]. Owing to the virtually identical patterns of
flux distribution, the fringing or “corner” capacitance in
the rectangular line is the same as that which exists in the
coupled-strip problem during odd-mode excitation (Cy,).

A. Zero Thickness Center Conductor

Using a conformal transformation technique, Cohn [8]
obtained an exact solution to the coupled-strip problem
with center conductors of zero thickness. By letting w/b
—o00, (refer to Fig. 1 for dimensional notation) he then
derived an expression for the odd-mode fringing capaci-
tance:
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The accuracy of (2) is satisfactory (less than 2 percent)
provided that interaction effects between the two edges of
the center conductor are not significant. Cohn [8] showed
that such effects could be neglected, provided that the
restriction w/b > 0.35 is maintained.

Recently, Tippet and Chang [9] have obtained a
rigorous and exact solution to the rectangular line prob-
lem with zero-thickness center conductor that is not based
on the related coupled-strip problem. The expression for
Z, derived by Tippet and Chang is as follows:

K()
=188.37— = o 3)
where K (A) and K()\’) are complete elliptic integrals of the
first kind, and A’ is defined in terms of Jacobian elliptic
functions as follows:

sn \? . TS
>\I=k/ alz 5 Wlth >\= 1—>\/2 e (4)
where
= NEZWY. ..
=K (k) (452) (5)
and the modulus &’ is derived from the identity
K _2a. ©
Ky b

The authors show how the exact expression for total
capacitance per unit length reduces to an approximate
form representing the inter-plate capacitance, w/b
together with the fringing capacitance Cj,, plus a correc-
tion factor AC which accounts for the interaction between
the two edges of the center plate. An approximation for
AC is given which is valid for w/b > 0.1, provided k'=1
(a/b—>cw0).

AC

AC_ 2,
€ T

8
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™

where
)\;[ 1 —~exp_2”’w/b] 12
Equation (1) is modified as follows to include the correc-
tion factor:
376.73 .
4[w/b+C;/e]-AC/e

(®)

o=

Fig. 1 shows characteristic impedance data for the case
of a center conductor with zero thickness. These plots
were obtained using (1) and (2) over the range w/b > 0.5.
Over the range 0.1<w/b<0.5, the correction factor AC
becomes significant and must be included in the calcula-
tions of Z,. For the unbounded case a/b= o, the correc-
tion factor can be computed directly using (7). For the
remaining cases considered (a/b=1.0, 1.1, etc.) reason-
ably accurate estimates of AC were derived using the data
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published in Fig. 2 of Riblet [10], where AC is four times
the G, given by Riblet. In Fig. 1, it is readily apparent
that the impedance plots become straight lines in the
region w/b<0.5. Furthermore, it is apparent that Z, is
almost independent of a/b as w/b—0.1; this means that
the vertical side walls have little influence on the fringing
fields when the center conductor is narrow. Some en-
larged details for transmission lines having design imped-
ances close to the standard 50-Q value frequently used in
practice are included as an insert to Fig. 1.

In Sections V and VI of a paper dealing specifically
with the rectangular line problem, Chen [11] recognized
the applicability of Cohn’s earlier results {8] to this prob-
fem. Although he gives formula (2) as derived by Cohn, he
fails to stress the important w/b restrictions on the appli-
cability of (2), imposed by Cohn. In Section VI, Chen
considers the special case of the rectangular line with
narrow center conductor (w/a<0.25). In this case, it is
claimed that the problem reduces to that of the un-
bounded strip line (a/b=00) in which Z, is independent
of a/b.

7 = 376.73
® a[w/b+(2/m)n(2)]

This assumption, as noted earlier, is essentially correct.
However, the impedance values derived from (9) do not
agree with the data of Fig. 1, owing to Chen’s neglect of
the edge-interaction correction factor.

©)

B. Center Conductor with Finite but Small Thickness

To date, there appears to be no general solution avail-
able for rectangular lines with center conductor of finite
thickness. A solution can be found in terms of degenerate
hyperelliptic integrals, but these functions have not been
well tabulated. However, reasonably accurate solutions
have also been obtained using estimates of the fringing
capacitance derived from the coupled-strip problem with
center conductors of finite thickness. Cohn [8] quotes the
fringing capacitance for this case in terms of C;, given in
(2) and additional fringing capacitance formulas applica-
ble to shielded strip transmission lines with thin center
conductors.

_ C/(t/b)

’ a-w\_ -/ P a-wy. .
G155 ) =gy Gl F) - 00
The reader is referred to an earlier paper of Cohn’s [14]
for data on C/(¢/b) and C/(0). Chen [11] adopted the

same approach and, based on some classical work of Sir J.
J. Thomson, derived the following expression for the

fringing capacitance:
t(2b—1)
(b—1)*

G {b
-ln[l+coth7r(a—'w)]--

ln( th—— ! ) +1n

€ aln(2)|b—t

2b (1
No restrictions on the applicability of (11) are given by
Chen. A somewhat different approximation was obtained
by Joines [12]:
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Fig. 2. Characteristic impedance for rectangular strip lines with center
conductor of finite thickness (/5 <0.1).
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Joines quotes the accuracy of these expressions as being
within 2 percent as long as Cohn’s restriction w/(b—1) >
0.35 is satisfied. Joines did not attempt to compute a
correction factor for the edge interaction so that these
results are only valid for the restricted range of w/b (See
Fig. 2 for impedance data derived using (12)).

Getsinger [13] has obtained an exact solution to the
problem involving coupled strips of infinite width (w/b=
o0) and arbitrary thickness (0< ¢/5<0.8). Fig. 4 of refer-
ence [13] gives data on the odd-mode fringing capacitance
which can be used to determine Z; for the rectangular line
with only small error. Getsinger quotes the accuracy of his
data as being less than 1.24 percent provided that Cohn’s
criteria of w/(b—1)>0.35 is adhered to. For narrower
center conductors, edge interaction effects again become
significant; for this case, the curves of Riblet [10] can be
used to estimate the interaction correction term AC; for
values of a/b>2.

C. Exact Solution for Rectangular Coaxial Lines with t/b
>0.2

Although not the principal subject of this paper, it is
worth noting that exact solutions have been derived for a
particular class of rectangular line having a relatively
thick center conductor that is approximately equidistant
from the outer conductor (i.e., a—w=b—1¢) [15]-[17]. In
Fig. 8 of Chen’s paper [11], the fringing capacitance is
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TABLEI

COMPARISON OF Z, VALUES FOR ZERO THICKNESS CASE (¢/b=0)

Tippet & Chang [9] Cruzan & Garver [18] Iwakura & Arakawa [20] Metcalf [19]
Case Expressions (3) % (6)

a/b {w/b Z0 Zo Diff. Zo Diff. Zo Diff.
1 0.80 54.54 54.9 +1.0(+ 0.3 64.5 + 0.5 0 54.5 + 0.3 0
1 0.65 69.80 70.3 + 0.7 |+ 0.5 70.3 #0.7|+0.5 69.7 + 0.3| - 0.1
1 0.5 87.03 87.0 + 0.9 0 87.1 +1.71+ 0.1 86.5 + 0.4 -~ 0.5
2 1.80 34,54 34.6 ¥ 0.3+ 0.1 34.0 +0.3]-0.5 33.9 + 0.2} - 0.6
2 | 1.50 45.07 45.2 + 0.3] + 0.1 45.2 + 0.5] + 0.1 44.7 + 0.2{ - 0.4
2 | 1.00 64.10 64.5+0.8] + 0.4 63.5+ 2.5| - 0.6 63.0 + 0.3] - 1.1
2 0.50 99.82 100.5 + 1.6 + 0.7 9%.7 £ 7.0{ - 0.1 97.0 + 0.5] -~ 2.8
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plotied as a function of inner conductor thickness for this
particular case. Data for thin center conductors (z/b<
0.2) are included in Chen’s Fig. 8, thus giving the reader
an impression that this solution is also valid for thin lines.
This is not the case, since estimates of Z, obtained using
Fig. 8 do not agree with the known exact values for
t/b=0. However, Chen’s data do appear to be accurate
over the range ¢/b>0.2 or ¢/(a— w)>0.5 where the curve
is approaching an asymptotic value of C;e€=0.559 as
t/b—1. Riblet [17] has obtained an exact solution for a
one-parameter family of rectangular coaxial lines with
t/b=0.4. For Riblet’s 50-Q line, (a—w)/b=(b~1)/b=
0.6, thereby satisfying Chen’s criteria. If the parameter
values obtained by Riblet for w/b and a/b are sub-
stituted in Chen’s equation (18) with C;e=0.557 (ob-
tained from Chen’s Fig. 8), the value obtained for Z; is in
exact agreement with that of Riblet.

D. Numerical Techniques

A number of authors [18]-{20] have utilized numerical
techniques to solve Laplace’s equation for the generalized
rectangular configuration including thick center conduc-
tors. Data for thin lines have generally been included.
Cruzan and Garver [18] used an orthonormal block analy-
sis technique and derived a series of nomographs giving
values of corner capacitance C; e against a—w /(b—{) for
various values of the parameters 2¢/(a—w) and 2w/(b—
£). The obvious complexity of the parameters utilized in
this study somewhat limits the usefulness of the data
derived. Furthermore, for lines with thin center conduc-
tors, much of the needed impedance data corresponds to
relatively large values of 2w /(b —¢) in the range 1 to 4.
Such data are not given by Cruzan and Garver, thereby
necessitating the use of extrapolation techniques in order
to estimate the value of fringing capacitance. The error
limits for their data are well defined by Cruzan and
Garver. Metcalf [19] has used a relaxation method and
published a very comprehensive set of design curves
giving Z, as a function of ¢/b for different values of w/a
and b/ a. Data on the “slab” line of infinite width are also
included. Metcalf claims an overall accuracy of better
than 0.5 percent for his data. Iwakura and Arakawa [20]

used a numerical integration technique and published
some limited data in which Z; is plotted against w/a for
the full range of ¢/b. Error limits are also defined in these
plots, ranging from less than [ percent to 5 percent or
more.

III. CoMPARISON OF DATA

It is instructive to compare the resulis obtained by
numerical techniques with the exact data derived from the
solution of Tippet and Chang [9]. Table I shows compari-
son data for the zero thickness case (/b =0). The values
chosen for the parameters a/b and w/b were those com-
monly considered by the three numerical iechnique
authors. The numerical data require reading of graphical
plots, so that an additional source of error is added which
is estimated to be no more than +0.25 €. In examining
comparison data of Table I, it is apparent that the numeri-
cal values of Cruzan and Garver are consistently higher
than the exact values, though the difference is small and
within the error limits specified. The values of Metcalf are
consistently lower, on the other hand, and the difference
is frequently greater than the error limit specified by
Metcalf.

Table II shows similar comparison data for the finite
thickness case (¢/b=0.1). Although none of these data
are known to be exact, the values derived from Getsin-
ger’s data were felt to be the most accurate and were
consequently used as a reference for comparison purpos-
es. Where significant, the correction data of Riblet [10]
were applied during the compulation of the reference
values. It is readily apparent from Table II that Chen’s
data deviate significantly from the other values, especially
for a/b=1, so that it appears that (11) yields data of very
questionable accuracy in the region w/a>0.6. It is also
apparent that the values derived from Joines’ expression
(12) are, in almost all cases considered, consistently lower
than the comparison values. The data of Cruzan and
Garver [18] are again in very close agreement with the
chosen reference values. A more valid comparison of
characteristic impedance data cannot be undertaken until
an exact solution is available for the problem involving
center plates of finite but small thickness.
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TABLE I
COMPARISON OF Z, VALUES FOR FINITE THICKNESS CASE (¢/b=0.1)
Chen [11] Joines [12] Cruzan & Iwakura &
Case Getsinger [13] | Expression (11) | Expression (12) Garver [18] Arakawa [20] | Metcalf [19]
a/b | w/b Z, z, | oiff. z, | Diff. z, | piff. z, Diff. Z, Diff.
50,3 70.7 05
1] 0.80 40,97 4.7 |+ 3.7 B8 (-12 | gy -0 ro0l4 (703 fyq |-08
_ 55.3 55.3 547
1] 0.65 55,17 57.4 [+ 2.2 54.0 - 1.2 | 57 [+ 0.1 s |10 +o3 |05
27.3 27.7 27.7
2| 1.8 27.62 29.3 |+ 1.7 271 - 0.5 | 50y [-03 NXEEAR L0z |*0
38.1 38.0 38.3
2 {15 38.10 38.7 |+ 0.6 7.81-0.3 | Solos| O Lo |- 01 Loz |t02
58.8 58.6 58.
2 | o3 58.61 5.6 | 0 5.1+ 0.5 | 53 |+ 0. Shel oo 10-5 + 0.1
87.2 86.5 85.9
2 | 0.5 87.27 8.7 | + 0.6 87.01- 0.3 | g3 -0 +52 |08 g |-

In conclusion, it is worth comparing the experimental
results which Crawford [1] obtained for his TEM trans-
mission cells with data predicted from (1) and (2) (these
are assumed to have center plates of negligible thickness,
since this is the only exact data available; actual values
used by Crawford ranged from ¢/5=0.001 to 0.009).
Using the dimensional parameters specified by Crawford,
the predicted values for Z, are 51.81 & for the square cells
(a/b=1,w/b=0.826), 51.99 Q for two of the rectangular
cells (a/b=1.667, w/b=1.202), and 51.49 & for the third
rectangular cell (a/b=1.667,w/b=1.213). These figures
are in very close agreement with Crawford’s design goal of
a nominal 52-& characteristic impedance.
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